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ABSTRACT

In simulating trajectory estimation problems, a
rapid procedure is desirable for generating random
sample-covariance matrices based on large numbers of
observations. By using existing random-number gen-
erators, an economical method is developed that yields

*®
a matrix S whose elements have the same joint dis-
tribution as the elements of the sample-covariance
matrix S.
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THE GENERATION OF A RANDOM SAMPLE-COVARTIANCE MATRIX

By Alan H. Feiveson
Manned Spacecraft Center

SUMMARY

Trajectory estimation simulation problems make desirable a rapid procedure
for generating random sample-covariance matrices based on large numbers of ob-
servations. This paper first presents an algorithm for such a procedure and
then shows its derivation from the Cochran-Fisher Theorem concerning quadratic
forms. Finally, an example is given.

INTRODUCTION

In trajectory analysis, the "best" estimate of the state is a function of
the covariance matrices Ri associated with the observation stations. For

practical use, estimates must be substituted for the unknown exact Ri' In

some cases, estimating the Ri directly from the observations may be desirable.

The well-known 'best", or unbiased-maximum-likelihood-based (u.m.l.b.),
estimator of a covariance matrix Ri is given by

n

1
S = n - 1 § :

i=1

X, - X)(Xi - XT) (1)

where the Xi are the observation vectors and n is the sample size. To sim-
ulate a procedure where u.m.l.b. estimates are used, random matrices must be
generated that have the same distribution as these estimates.
*
The obvious method of generating a matrix S , having the same distri-
bution as S, is to generate the n observation vectors {Xi; i=1,... n}.
But if each vector Xi has p components, generating n observation vectors

necessitates generating at least np .andom numbers.



*
This paper presents an alternate method of generating S which requires
using only p(p + 1)/2 random numbers - usually a much smaller quantity than

np.

SYMBOLS

* *
A, A,B,B,C, R, W, 5, 8 matrices

Ai matrices in Cochran's Theorem
bij ijth element of B
* *
b .. ijth element of B
1]

CT transpose of the matrix C

I identity matrix

i, j, k indices of summation
N(@,R) normally distributed with mean @ and

covariance matrix R

Nj’ Nij standardized normal random variates
n sample size
P size of covariance matrix (number of

variables in one observation)

J-1
Q matrix equal to I - E Qk
k=1

. T - T
Qi matrix equal to yi y%/§iyi
rj jth row of matrix W
T
r(j transpose of rj




tk transpose of tk
Vj random variable
wij ijth element of W
x 1 x (n -1) random vector in
Cochran's Theorem
.th
V. B of a set of orthogonal 1 x (n - 1)
J vectors
T
Y. transpose of y.
J J
Zy tk P X 1 vectors
x2 (n - 3) chi-square with n - j degrees of freedom
V. rank of A,
1 i
@ p X 1 null vector
~ is distributed as
METHOD

Let 8 =A/(n - 1) be the u.m.1.b. estimator of a p x p covariance
matrix R from an independent normally distributed sample of size n. It
can be shown (ref. 1) that

A ne (2)

where the p x 1 vectors {zk; k=1,2, ... n ~- l} are independent and

normally distributed with zero mean and covariance matrix R.



Since R

a matrix C exists such that

It follows that the vector =z can be written

k

where
t, ~ N( @, I)
Let -1
_ _ T
B = {bij} tktk
k=
Then,
n-1
T _ :E : T.T _
CBC™ = C tktk CT =A
k=1

Generation of A

is a covariance matrix, it is semipositive definite.

Therefore,

(3)

(&)

(5)

(6)

*
Let A TDbe a generated matrix whose elements have the same joint distri-

* *
bution as those of A. To obtain S = A./Qn - 1), it is necessary only to

generate a matrix B

*
Then, A is computed so that

* *
A =CB CT

whose elements are distributed as the elements of B.

(7)



*
Hence, the problem is reduced to generating the random symmetric matrix B

*
An algorithm for generating B is given below. For a Jjustification of this
procedure, refer to the Analysis.

*
Generation of B
. 2 . . . .
1. Generate p independent X variables Vj’ jJ=1,...p, having n - j
degrees of freedom. One method of obtaining v, is to generate a standard

normal variate Nj and substitute it into the Wilson-Hilferty x2

approximation
(ref. 2). The approximation can be written

a3
X 2 ] 2
vy (0= g) 1"9Zn-J5+N3\/9(n-J>

2. Generate p(p - 1)/2 independent standard normal variates N,

s o< s
1J
and j =1, 2, ...p.
. * | %
5. Form the diagonal elements of B (b IEE Jg =1, ... p) as follows:
b* =
11 - "1
J-1
* 2
b = v, + N, . > 1
TRRIDDEFECAE
i=1

o v N
S T S R \/ 1
i-1
o o ( E
—3 = +
i ii Nij Vi N, M (i > 1)
k=1

* *
Once B  has been generated, A follows from equation (7).



ANATYSTS

Using the notation of the Method section and noting that by joining the

vectors t_ and k =1,2, ... n-1as columns, & p x (n-1) matrix W

can be formed

where rs is the jth 1 x(n-1) row vector of W. Thus, the ijth ele-

ment of B, b.., is equal to r.r.T
1J 14

By using the Schmidt orthogonalization process, a set of orthogonal

vectors {yj, Jg=1, 2, . . . p} can be generated where
Y., =T, =Ty TY Y.y T r.y TY Yy y T
J J J°1 1’1 T3 Y-l [75-175-1
= rj( I - Ql - Q2 - e Qj-l)
=, 8
5Q (8)

J-1
where Q. = y.Ty./y.y.T, Q=1I- Z Qk and I is the (n-1)x (n - 1)
i iYif 7ivi
=1
identity matrix.

The matrices Q, Q., ... Q have the following significant properties:

J-1

1. Ql’ Qo voe Qj-l have a rank of one.

2. Qin =0 for i # j.
5. @ Qs .. Qj—l are symmetric idempotents.

4. Q has rank n - j.




Proof

1. The vector vy clearly spans the entire range space of Qi'

T T
y y Y y T
2. Qi _( )( ) = O Dbecause yiyj =0 for 1i#j.

5. Clearly Qi is symmetric. To show idempotence,

T( T T
Pl O e

S o ]

and

QQ

(I - Q- .. Q(j_l)(I -0y - .- Q‘.]_l)
L Y R
I - (Ql + ... Qj+l) = Q

L. This follows from elementary theorems on idempotent matrices (ref. 3).
Consider the following form of the Cochran-Fisher Theorem.

Theorem

If x isa 1 x (n-1) random vector distributed N (¢, I), and if

K
= E xAixT the rank of the sum of the Ai's egualling the sum of tle
i=1

T

ranks of the separate Ai's is a necessary and sufficient condition for xA.x

i
to be distributed as central X2 with vi degrees of freedom where vy is

T

the rank of Ai)’ and for XAlXT, xAgx 5 eee xAkXT to be jointly independent

(ref. L).



Note that the inner product rjro can be written

T T
r.r. =r.Ir, =r. + + ... . r.
JJ J (Q % QJ-l J

I
y
[}
g
[}
=
+
.
[}
o
a}
[}
H

(9)

Equation (9) satisfies the condition of the Theorem where the matrices
Q, Ql, cen Qj 1 play the role of the Ai' It therefore follows that

T T T T T 2 .
r.Qr. = r. r. =r, r. = y.y. ~X {(n -
sary JR T 5Q ( JQ) Y495 (n - 3J)
Since the yj are mutually orthogonal and normally distributed, the quantities
yjij, (j =1, 2, ... p), are mutually independent. They can be generated
2
independently using random variables Vj’ having the X distribution with

n - j degrees of freedom.

Once the set 3yjij, j=1... pg is given, the gquantities
1/2 r.y.Ty.r.T 1/2 r.y.T
T _ Jg'i “1i7j _ i
o,. = |r.q,r. = f— = (10)
ij Joitg y.y.T T 1/2
Tt IiY5

being normalized linear combinations of N(0,1) variates, are themselves,
N(0,1) variates.

Since all the elements of the matrix W are mutually independent, Oij
is independent of Ui'j' for J % j's i< j, 1"« J'. Furthermore, as a

consequence of the Theorem, it is known that for i % i', Oij ig independent



of Oivse Therefore, the p(p + 1)/2 gquantities, yjij and oij(j =1, p;

i < j), can be generated independently, using the X2 random variable Vj for

y.y.T and standardized normal variates N,., for o...
J7 3 1] 1
*
The diagonal elements of B are easily computed from equation (9). Let

b* =
1 -"1
j-1
* 2
b .. =v, + E N, . i > 1
Jd J 1) (3 )
i=1
Since ¢ T =7r T it follows that

T
Nij [vi,V rjyi

From equation (7) for i < j,

T T

N R B (riyl ) T (riy2 ) T ( iYio1 ) T
J'yl J i T I1 T 4 Y i-1

Y191 ) To¥o (yi—lyi~1

T Nll T N2i T Nl-ll

~ - —_— +
rJ * \2 (rJy2 A\ (I‘Jy2 ) * \'2 ( Jy:L—l )
\/ 1 V 2 i-1



Therefore, b .. =b .. can be generated by

o’
1

ij Nij ﬂ

o’
I

iJ 1301 z:klkJ i-1).

Example

*
Consider the generation of 8 based on 101 observations

R -.21 0
when R 1is given to be -.21 .50 .Q5
0 .05 .25
6 -.3 0
Then n = 101, p =3, and C = ) T 1
0 0 5

It is necessary to generate only 6 (instead of 606) random numbers from an
N(0,1) vpopulation. They are:

Nl = -0.258 N12 = -0.585
N, = -0.882 le = 0.3%2
N5 = 1.869 N23 = -0.110

10



The Wilson-Hilferty X2 approximation gives:

. -
3
v, =100 {1 - 2 + (-0.238) V2 = 96.027
(9)(100) 4/900° ]
i 13
vy = 99 1 - 2 + (-0.882) V2 = 86.L492
(9)(99) 891 |
[ 13
v, =98 |1 - 2 , (-2.869) N2 |° 125.769
(9)(98) V882 J

Finally, the procedure given in the Method section yields

*
b 1, = 96.027
* 2
b, = 86.492 + (-0.585) = 86.835
* 2 2
b 55 = 125.769 + (0.332)° + (-0.110)° = 125.891

*

b, = ~o.585\}96.027 = -5.734
*

b 13 0.552-q96.027 = 3.250

*

b o3 = -o.llﬁrq86.u92 + (-0.585) (0.3%2) = -1.216

i

Thus,
A" = cfr’e
Ll 4hg -20.h12 1.157
= |-20.412 43.638 5.869

1.157 5.869 31.473



and

0.huhL -0.204 0.012
s = A*/(n - 1) = {-0.204 0.436 0.059
0.012 0.059 0.315

CONCLUDING REMARKS

This report has presented an economical method of generating a p x p
sample covariance matrix based on n observations. The method requires the
generation of only 7p{(p + 1)/2 random numbers instead of the usually much
larger guantity np. The matrix C referred to in the Method section may be
obtained by methods readily adaptable to computers.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, October 18, 1965
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